Mikey Ku
Heesung Han

Mini Project 3- DC Motor Control

Section 1: Overview and Introduction

Our goal for this mini project is to create a two-wheeled chassis that follows a track made of tape
laid out on the floor. Firstly, we created a new mechanical chassis that matches our needs. We
then developed a closed-loop controller that runs on an Arduino, integrating several IR
reflectance sensors to determine whether the chassis is following the line correctly. After that, we
coded a functionality to allow the user to test the robot and make changes in real time rather to
reset and recompile the code.

This write up will dive deeper into the content we had talked about. We will discuss the system
diagrams, the process of calibrating and integrating the sensors, the design of the chassis, the
circuit diagram, the functionality of the controller, and the final results.

Section 2: System Diagram
To fully understand the components and interactions within our project, we created a data and
energy flow diagram.

Serial Instruction ex. Changing speed, stopping
the vehicle, manual control

l Serial Monitor: Returns IR sensor values and .

decision of car ex. Turning left or right

N\

v

\

Voltage Readings
from IR sensors

Instructions to know how to
properly process and receive data

12V

F 3

Voltage Readings
from IR sensors

Figure 1: Data and Energy Flow Diagram

In this diagram, you can see how all the components in our system work together. It starts with
the Arduino, which serves as the heart of the system. It connects nearly all the components, from
the IR sensors to the DC motors, so that all data is processed through the Arduino. Next, we
move to the computer, which provides the Arduino with instructions on how to process the
inputs received from each component. The computer also receives live data from the sensors,
which it uses to interpret the car’s decisions and display them in the serial monitor for the user.
The user, in turn, can type values or commands into the serial monitor to control the car. These
commands are then passed back through the system to the motors, causing the car to move.
Altogether, the system’s components work in harmony to create an efficient flow of information
and control.

Section 3: Sensor Calibration

To calibrate our sensors, we began by collecting readings from both white and dark surfaces, as
these are the two key contrasts the sensors detect. We needed to understand these values so the
robot could determine when the sensors were positioned over the line and identify any
discrepancies between the left and right sensors.

To test this, we placed our robot on the surface after wiring all the sensors and recorded the
sensor readings for both the line and the surrounding ground. The values we obtained showed
that the white surface produced readings around 60, while the dark surface produced readings
around 750. To allow for small variations in lighting and surface texture, we set the cutoff
threshold to around 80, providing some leeway in case conditions were not consistent across the
tape, which could have darker spots from being worn down.

Section 4: Mechanical Chassis

Although we were given a chassis to begin with, we found some key flaws with it. The first key
flaw was the instability of the laser-cut motor mounts. We found that it was difficult to get a
precise location when the wheels themselves were not stable. Another flaw was how high it was
above the ground. Ideally, we would want to be lower to the ground so that it will be more stable.
With these changes in mind, we designed and made a new chassis with the 3D printer.

Figure 2: Full CAD of the chassis
Some noticeable features that we want to emphasize in this design are getting the robot closer to
the ground, ensuring the robot is parallel to the ground, and the adjustable sensor mounts, which
allow us to test different heights and widths. This design is composed of three distinct parts: the
caster wheel mount, the gearmotor mounts, and the IR reflectance sensor mounts. We will go

more in-depth, starting with the caster wheel mount.

[———— 2 ——
21
S 0485 [[0.
©0.165
R
1.33
..... ~ e oe—th

S 086 '/
L \‘

Figure 3: Initial Sketches of the Caster wheel

These are the initial sketches of the caster wheel mount. First, we found the mounting patterns of
the caster wheels. We then found the height the caster wheel needs to be parallel to the ground by
finding the exact model of the caster wheel. With this information, we knew the height and
where to place the wheels. We decided on a slope feature down to the rest of the platform rather
than going straight up to provide more support and a lower chance of snapping. We can now
explore the mechanical decisions behind the gearmotor mount.

@25

00126 off7e \

S 0344 v

imw | . o \

Figure 4: Initial Sketches of the gearmotor mount
This may seem confusing, but the general concept is to find the best location for the motor
mount. We were given the gearmotor wheels, which were 2.5 inches. We knew the mounting

holes of the gearmotor mounting points, which were 17.5 mm apart from each other. From this,
we were able to find the perfect position to put the mounting holes.

Figure 5: Detailed View of the gearmotor mount
With the initial sketches, we now knew where to put the mounts. Since one of the major issues
was the instability of the laser-cut mounts, we wanted to sandwich the motors to be certain that
there was no play or slack on the wheels. On the inner mounting holes, we gave it an L shape so
that it wouldn’t snap from external forces. We also had 2.625 inches between the two motors
because we wanted to fit an Arduino in the middle.

o
(0]
o of [
0
Rl ©
(0]
L]
oy O

Figure 6: Detailed View of the IR reflectance sensor mount
Finally, we will expand on the mechanical reasoning for the IR reflectance sensor mount. We
knew that we didn’t want to just stick with one design, as there are unforeseen circumstances that

might make us need more than two sensors, or if they need different heights. Using screws and
nuts, we can move the different sensor mounts around. This helps us by saving time and filament
from 3D printing numerous times.

Section 5: Circuit Diagram

lil When developing the circuit, there was one key

component we needed to determine: the value of

R_sense R_Sense, which can be seen in the circuit diagram
200 § § provided on the left (Figure 7). This diagram represents
<‘§°“‘ the circuit for the IR sensor. The IR sensor consists of
. four pins: the anode, cathode, emitter, and collector. In
IRLED W \<|§> shoTorransisTor (1S diagram, the anode and cathode correspond to the

positive and negative terminals of the IR LED, while

the emitter and collector represent the terminals of the
phototransistor. With this understanding, we could

determine how to wire the entire circuit.

=

Figure 7: Circuit Diagram

Next, we needed to calculate the R_Sense value. Based on the TRCT5000 datasheet, the emitter
current of the phototransistor was tested at approximately 1 mA. Using this information, we
applied Ohm’s Law to find the resistor value. Since the supply voltage for the circuitis 5 V and
the current is 1 mA, the resistor value can be calculated as follows:

_ Vv _ SV
R = I 00014 5000 Q

Figure 8: Calculations using Ohm’s Law

From this, we determined that the R_Sense value should be 5 kQ. With this information, we
finalized our circuit and wired everything together in KiCad. The circuit diagram above was used
to guide the connections for the IR sensors. Additionally, we used a custom KiCad Arduino
motor shield design to show how the motors are wired and how the 12 V power source is
integrated into the system.

M1

Motar_DBC
+ —
1)
[11 E ATHN, -
== = = = -—
o col A
o 43p N] 5
= jijDO,("R}(Pawer +12V Eﬁé TCRTS000 500
= o 01/TX L !
5 :ig) eND P> 6ND
2 ad o 5v r
2 2d;
] ﬁ DA) 9 .
o 6 AD R
a 247 a1 9 200 = TCRT5000 ?S
Z Alos a2 L A qoLLY
o :ﬁ:g D9 A3 % # - K
S 010 SDA/AY F=b - CATHT — E
T &p11 SCL/AS B L pene
£ p12 SDA/AL Pl
13 scu/msES
K1 M = e e
= = LI = =
L L1
+ —
1 p)
Motor_DC

M2

Figure 9: KiCad wiring diagram

Section 6: Controller
When developing our line-following logic, we used the strict line-following approach, starting
with two IR sensors. By “strict line following,” we mean that the sensors are spaced just wide
enough to fully cover the line.
Our control logic is simple:

e Ifboth IR sensors detect white, the robot moves straight.

e If the left sensor detects a darker surface, the robot turns right.

e [fthe right sensor detects a darker surface, the robot turns left.
The robot continuously adjusts itself until both sensors once again detect the same surface,
ensuring it stays centered on the line. We also implemented a feature where, if neither sensor
detects the line, the robot will keep pivoting until it finds it again. The following section shows
the code that implements this logic.

To start, we defined several base values that are used throughout the program. These include the
different speed settings, such as base, turn, and pivot, as well as the threshold value that
distinguishes the white tape from the surrounding surface.

const int threshold = 80;
int baseSpeed = 40;
const int turnSpeed = 35;

const int pivotSpeed = 30;

Figure 10: Base Values

From here, we can start breaking down how everything works. Let’s look at the different types of
movements the car can perform:

Forward: The concept of forward movement is very ~ v01d forward(int spd) {

simple. To make the car move forward, both motors leftMotor->setSpeed(spd);
must run at the same time and at the same speed. rightMotor->setSpeed(spd);
This behavior is shown in the code on the right. leftMotor->run(FORWARD) ;

rightMotor->run(FORWARD) ;

[—_—

Figure 11: Forward Movement

Left/Right: The concept of turning is slightly
different. In this case, one motor runs faster
than the other, causing the car to turn in the
lefthotor->setspeed(turnspeed); girection of the slower motor. For example, if
rightMotor->setspeed(baseSpeed); the right motor speed is lower than the left, the
leftMotor->run(FORWARD) ; car will turn to the right because the left motor
rightMotor->run(FORWARD) ; is doing more work. In our setup, the base speed

is higher than the turn speed, so whichever

void turnLeft() {

[

motor is set to the turn speed determines the
Figure 12: Turn Left /Right direction of the turn. For instance, if the left

motor is running at the turn speed, the car will

turn to the left.
Pivot Left/Right: The concept of pivoting is similar to mjllgfi':«:;izifEzzgpiec (pivotspeed);
turning. The main difference lies in the speeds used and rightMotor->setspeed(pivotspeed);
how it is applied later in the program. In the basic code, the leftMotor->run(FORWARD) ;
same principle applies: to pivot in one direction, one motor rightMotor->run(BACKWARD) ;
must run slower than the other, causing the car to rotate in
that direction. The pivot speed is slower than the base

[—]

Figure 13: Pivot Left /Right

speed, so whichever motor is set to the pivot speed determines the direction of the pivot. The car
will continue to pivot slowly until it realigns with the line.

Now that we have established how the car moves, we can discuss the logic that controls its
operation and looping behavior. Below is the full set of conditionals that determine how the car
responds to different sensor readings.

There are four main scenarios:

1f (leftonwhite & Irightonihite) { 1. Left sensor on the line, right sensor off:
ii:iiézgj_'n(furning LEFT™); This means the line is closer to the left side, so the
lastTurn = -1; car needs to turn left until both sensors detect the

} same surface again.

else if (!leftonwhite && rightonwhite) {
serial.println("Turning RIGHT"); 2. Right sensor on the line, left sensor off:
E:lii%:ti)i, This is the opposite situation, where the line is closer

} to the right side. In this case, the car turns right until

it realigns with the line.
else if (leftOnwhite && rightonwhite) {

Serial.println("Going STRAIGHT");
forward(userspeed) 3. Both sensors on the line: This is the

lastTurn = 6; simplest case. When both sensors detect the line, the

) . . .
else { car continues moving straight at a set speed.

X

m

Serial.print("Lost line — Pivoting ");

if (lastTurn <= @) { 4. Both sensors off the line: In this situation,

serial.println("LEFT"); the car has lost the line completely. It will pivot until
} 31""9%@‘%()3 the sensors detect the line again.
else {

Serial.println("RIGHT");
pivotRight();
¥
h

Figure 14: Line Following Logic

In addition to the main logic and controller, we added several features to allow user interaction
with the car. These features include the ability to stop the car, set custom speeds, and control
basic movements such as moving forward, moving backward, and resuming normal
line-following behavior.

To achieve this, we first take input from the Serial Monitor in the Arduino IDE, which the
Arduino reads and processes in real time.

void checkSerialCommand() {
if (Serial.available() > @) {
string command = Serial.readStringuntil('\n"),
command.trim();

Figure 15: Serial Monitor Input

From here, we process the user input and define a few specific commands for the Arduino to
recognize. In our case, there are five main commands that the system looks for:
1. “stop”
2. “resume”
3. “speed <value 0-255>”
4. “backward”
5. “auto”
Here is the code that represents what happens when each thing is typed:
if (command.equalsIgnoreCase("stop”)) {
isStopped = true;
forward(e);
Serial.println("Car stopped.”);

Figure 16: Code “stop” is typed

If the Serial Monitor receives the word “stop,” the program sets a variable called isStopped to
true and sets the motor speed to zero, resulting in no movement. The car will remain in place
until a new command is entered, since the main loop continues to skip execution while isStopped
is set to true.
else if (command.equalsIgnoreCase("resume”)) {
isStopped = false;
Serial.println("Resuming line following...");

Figure 17: Code “resume” is typed

If the word “resume” is entered, the program sets isStopped back to false, allowing the original
line-following algorithm to run normally again.

else if (command.startsWith("speed ")) {

int val = command.substring(6).toInt();

if (val >= @ && val <= 255) {
userspeed = val;
baseSpeed = val;
Serial.print("Speed set to ");
Serial.println(userSpeed);

} else {
Serial.println("Invalid speed. Enter ©-255.");

Figure 18: Code “speed” is typed

Once the car is stopped, there are a few options for what the user can do next. One option is to
type “speed” into the Serial Monitor to change the car’s running speed. To enter a specific value
(from 0 to 255), type the word “speed,” followed by a space and then the value. That number
becomes the new speed, and the code above includes logic to filter out invalid inputs.
else if (command.equalsIgnoreCase("forward”)) {

manualMode = true;

torward(userSpeed);

delay(10e0);

tforward(e);

Serial.println("Moving forward manually.™);

Figure 19: Code “forward” is typed

The code above shows what happens when the word “forward” is entered. In this case, the car
moves straight for about one second and then stops. This function is useful for nudging the car
back onto the track if it has drifted off.

else if (command.equalsIgnoreCase("backward"))
manualMode = true;
leftMotor->setSpeed(userspeed);
rightMotor-»>setSpeed(usersSpeed);
leftMotor->run(BACKWARD) ;
rightMotor->run(BACKWARD);
delay(1ee@);
forward(e);
Serial.println("Moving backward manually.");

Figure 20: Code “backward” is typed

The code above performs the opposite action. It makes the car move backward for about one

second, allowing a small backward nudge to help the car get back on the track if needed.
else 1t (command.equalsIgnoreCase("auto™)) {

manualMode = false;

serial.println("Switched back to auto line-follow mode.");

}

else {
Serial.println("unknown command. Try: stop, resume, speed <@-255>, forward, backward, auto");

1
Figure 21: Code “auto” is typed

The code above shows the final two conditionals. The “auto” command returns the car to
automatic line-following mode, preparing it to resume autonomous driving. The final conditional
handles invalid inputs and ensures that the user enters correct commands for the Arduino to
process. Altogether, this is how the Arduino interprets input values and controls the car to
successfully follow the track.

Section 7: Plots

IR Sensor and Motor Command Comparison

150, 7— —— - — —r——r——— = F=TT— =1 =T r~-— 150

Y L 1 ol vy ! :i W [iy 1

1 Lefth | 1 ' lil |||I H IIH 'I| || |||

'I__-ﬁgthrtﬂltior ! |I 1 ‘|| Ly "'I: :JI ': :I i:] l:l': H

| RightMotor [| 1] Iy el o R !

T A |||| ll|l oo I l|I| | l| !

L T Ly el g
) LT B T Y T 1y ! R R B L B o
o S LI oy "': ot 'I:' RPN
@woohRM vt iy 1! coalh e T g0 O
= W] [T B ! 1 1 I 11 iy (L [
i (e by v ! ety L L I TR =
%] L 1 19 i ! I h LN L, =
n tra g M 1] [11 i, by =
«) e T ! n! R T =
; |‘ |I| il“ | “ “l I 1 I I !] 1 g
c I‘ vl I v r \ i | HI l||| il 1 || =
-K_OU |d N N N A Y, .If iy, \||JIII I =
© 1, AT e @
= | 2
S o
éSU— - 50 §
Q
x p=

ARAR PR L A AF NMA—AR AR

| |

0 0
150 200 250 300
Sample Index

Figure 22: Plot of IR Sensor and Motor Command Comparison

To better visualize how the car behaved during a run, we created a plot in MATLAB showing the
IR sensor readings and motor outputs over time. We applied a cutoff value to the IR sensors
because the large difference between the minimum and maximum readings made the data
difficult to interpret. In the plot, each drop in the IR sensor values corresponds to a reaction from
the motors, illustrating how the car responded to different sections of the track. This visualization
clearly shows how the car perceived and reacted to its environment throughout the run. It also
provides an approximate visualization of the car’s movement along the track. The points where
the motor voltages flatline represent straight sections of the course where no turns were needed,
while the regions with significant fluctuations in IR values and motor speeds indicate turns or
corrective adjustments. Overall, this plot provides valuable insight into the car’s behavior and
control performance during the run.

Section 8: Video
The following is a video of the system with line following.
https://youtube.com/shorts/ yGmEujxP80?si=z3EPTMJkCsCh1JCX

The following is a video of the serial input with behavior change of the system.
https://youtube.com/shorts/wv4oc4SpL 1 k?si=m6 Y TCcEHzHFikN6-
Section 9: Reflection

https://youtube.com/shorts/_yGmEujxP80?si=z3EPTMJkCsCh1JCX
https://youtube.com/shorts/wv4oc4SpL1k?si=m6YTCcEHzHFikN6-

Overall, the project went very smoothly. We were able to finish at a good pace without feeling
too much pressure from deadlines. Each of us focused on different aspects of the project, and we
worked efficiently as a team, communicating well whenever we needed input or feedback from
each other.

There are a few mechanical improvements we could make in future iterations. While designing
the chassis, the gear motor mount was too thin and eventually snapped on one side. Next time,
we can reinforce areas that experience higher stress to improve durability. We also realized that
we did not fully consider how the chassis would be 3D printed. Some parts required excessive
support material, which wasted filament and printing time. In the future, we will take print
orientation and support usage into account during the design process.

There are also improvements to be made on the electrical and programming side. Our current
robot is somewhat limited by its speed and accuracy. At times, it struggles to detect the line or
react quickly enough to changes in the path. A major improvement would be to add more IR
sensors to increase the detection range and resolution. This would allow the robot to detect the
line earlier and respond with greater precision. Placing the sensors in an arc configuration is a
common and effective method to achieve this, as it provides a wider field of view for tracking
the line.

Finally, we can improve our teamwork by collaborating more simultaneously. There were times
outside of class when only one person was working while the other was unavailable, which
sometimes affected our communication. In future projects, working together in real time more
often would help maintain consistency and strengthen coordination.

Section 10: Source Code
Arduino Code:

#include <Wire.h>
#include <Adafruit_MotorShield.h>
#include "utility/Adafruit_MS_PWMServoDriver.h"

// Motor setup

Adafruit_MotorShield AFMS = Adafruit_MotorShield();
Adafruit_DCMotor *leftMotor = AFMS.getMotor(3);
Adafruit_DCMotor *rightMotor = AFMS.getMotor(2);

// IR sensor pins
const int leftIR
const int rightIR

A2;
AQ;

// Thresholds & Speeds

const int threshold = 80; // Tape vs Not tape

int baseSpeed = 40; // Normal forward speed

const int turnSpeed = 35; // Turn Speed

const int pivotSpeed = 30; // Pivot speed when line is lost

// State tracking
int lastTurn = @; // -1 = left, 1 = right, @ = none

// Serial control states
bool isStopped = false;
bool manualMode = false;
int userSpeed = baseSpeed;

// Motor state tracking

int leftMotorSpeed = 0;

int rightMotorSpeed = 0;
String leftMotorDir = "STOP";
String rightMotorDir = "STOP";

// Setup
void setup() {
Serial.begin(9600);
if (!AFMS.begin()) {
Serial.println("Could not find Motor Shield. Check wiring.");
while (1);
}

Serial.println("2-Sensor Line Follower with Serial Commands Ready!");
Serial.println(M---------mm e e)
Serial.println("Commands:");

Serial.println("stop, resume, speed <@-255>, forward, backward, auto");

Serial.printIln(M------------ oo ")
Serial.println("Left IR | Right IR | State | L-Speed | R-Speed | L-Dir |
R-Dir");
Serial.println(M-------- - - e 8
}
// Loop

void loop() {
checkSerialCommand();
if (isStopped) return;
if (manualMode) return;

// Read sensor values
int leftval = analogRead(leftIR);

int rightval = analogRead(rightIR);

bool leftOnWhite
bool rightOnWhite

(leftval < threshold);
(rightval < threshold);

// Print readings
Serial.print(leftval);

Serial.print(" | ");
Serial.print(rightval);
Serial.print(" | ");

// Line following logic
if (leftOnWhite && !rightOnWhite) {
Serial.print("Turning LEFT");
turnLeft();
lastTurn = -1;
}
else if (lleftOnWhite && rightOnWhite) {
Serial.print("Turning RIGHT");
turnRight();
lastTurn = 1;
}
else if (leftOnWhite && rightOnwWhite) {
Serial.print("Going STRAIGHT");
forward(userSpeed);
lastTurn = 0;
}
else {
Serial.print("Lost line -- Pivoting ");
if (lastTurn <= @) {
Serial.print("LEFT");
pivotLeft();
} else {
Serial.print("RIGHT");
pivotRight();
}
}

// Print motor state
Serial.print(" | L:");
Serial.print(leftMotorSpeed);
Serial.print(" R:");
Serial.print(rightMotorSpeed);
Serial.print(" | DirL:");
Serial.print(leftMotorDir);

Serial.print(" DirR:");
Serial.println(rightMotorDir);

delay(80);
}

// Serial Command Handler
void checkSerialCommand() {
if (Serial.available() > @) {
String command = Serial.readStringUntil('\n');
command.trim();

if (command.equalsIgnoreCase("stop”)) {
isStopped = true;
forward(0);
Serial.println("Car stopped.");
}
else if (command.equalsIgnoreCase("resume"”)) {
isStopped = false;
Serial.println("Resuming line following...");
}
else if (command.startsWith("speed ")) {
int val = command.substring(6).toInt();
if (val >= @ && val <= 255) {
userSpeed = val;
baseSpeed = val;
Serial.print("Speed set to ");
Serial.println(userSpeed);
} else {
Serial.println("Invalid speed. Enter ©-255.");

}
}
else if (command.equalsIgnoreCase("forward")) {
manualMode = true;
forward(userSpeed) ;
delay(1000);
forward(0);
Serial.println("Manual forward complete.");
}
else if (command.equalsIgnoreCase("backward”)) {
manualMode = true;
backward(userSpeed);
delay(1000);
forward(0);
Serial.println("Manual backward complete.");

}

else if (command.equalsIgnoreCase("auto")) {
manualMode = false;
Serial.println("Switched back to auto line-follow mode.");
}
else {
Serial.println("Unknown command. Try: stop, resume, speed <0-255>,
forward, backward, auto");

}
}
}

// Motion Functions

void forward(int spd) {
leftMotor->setSpeed(spd);
rightMotor->setSpeed(spd);
leftMotor->run(FORWARD) ;
rightMotor->run(FORWARD) ;
leftMotorSpeed = spd;
rightMotorSpeed = spd;
leftMotorDir = "FWD";
rightMotorDir = "FWD";

void backward(int spd) {
leftMotor->setSpeed(spd);
rightMotor->setSpeed(spd);
leftMotor->run(BACKWARD) ;
rightMotor->run(BACKWARD) ;
leftMotorSpeed = spd;
rightMotorSpeed = spd;
leftMotorDir = "REV";
rightMotorDir = "REV";

void turnLeft() {
leftMotor->setSpeed(turnSpeed);
rightMotor->setSpeed(baseSpeed);
leftMotor->run(FORWARD);
rightMotor->run(FORWARD) ;
leftMotorSpeed = turnSpeed;
rightMotorSpeed = baseSpeed;
leftMotorDir = "FWD";
rightMotorDir = "FWD";

void turnRight() {
leftMotor->setSpeed(baseSpeed);
rightMotor->setSpeed(turnSpeed);
leftMotor->run(FORWARD);
rightMotor->run(FORWARD) ;
leftMotorSpeed = baseSpeed;
rightMotorSpeed = turnSpeed;
leftMotorDir = "FWD";
rightMotorDir = "FWD";

void pivotLeft() {
leftMotor->setSpeed(pivotSpeed);
rightMotor->setSpeed(pivotSpeed);
leftMotor->run(BACKWARD) ;
rightMotor->run(FORWARD) ;
leftMotorSpeed = pivotSpeed;
rightMotorSpeed = pivotSpeed;
leftMotorDir = "REV";
rightMotorDir = "FWD";

void pivotRight() {
leftMotor->setSpeed(pivotSpeed);
rightMotor->setSpeed(pivotSpeed);
leftMotor->run(FORWARD);
rightMotor->run(BACKWARD) ;
leftMotorSpeed = pivotSpeed;
rightMotorSpeed = pivotSpeed;
leftMotorDir = "FWD";
rightMotorDir = "REV";

MATLAB Code:

% Load the CSV data
data = readtable('ArduinoVals.csv');

% Extract columns
leftIR = data.("LeftIR");
rightIR = data.("RightIR");

leftMotor = data.("LeftMotor");
rightMotor = data.("RightMotor");

% Cap IR values at 150
leftIR(leftIR > 200) = 150;
rightIR(rightIR > 200) = 150;

t = (1:1length(leftIR))’;
startIdx = 150;
endIdx = 300;

t = t(startIdx:endIdx);

leftIR = leftIR(startIdx:endIdx);

rightIR = rightIR(startIdx:endIdx);
leftMotor = leftMotor(startlIdx:endIdx);
rightMotor = rightMotor(startIdx:endIdx);

% Plot
figure;
hold on; grid on;

plot(t, leftIR, 'r--', 'LineWidth', 1.5);
plot(t, rightIR, 'b--', 'LineWidth', 1.5);
plot(t, leftMotor, 'm-', 'LineWidth', 1.5);
plot(t, rightMotor, 'c-', 'LineWidth', 1.5);

% Use unified Y-axis
ylim([© 150]);

% Labels, title, legend

xlabel('Sample Index');

ylabel('Value (IR and Motor)');

title('IR Sensor and Motor Command Comparison');
legend({'Left IR', 'Right IR', 'Left Motor', 'Right
"Location', 'northwest');

Motor'},

