Mini Project 2: 3D Scanner

By: Michael Ku and Liam Carlin

Introduction:

For this mini project, we were challenged to create a 3d scanner using an IR sensor and
two servos to create a Pan-Tilt Mechanism. All of this was taken together with an
Arduino Uno to help take in all the information and passed to a MATLAB script to create
a 2d representation of the scanned image. Throughout all this, all of our design choices
and code will have a reason to back up why they were made.

Circuit development:

In general, the circuit development for this project was straightforward. According to the
documentation for the servos and IR sensors, these are complete modules that are already
designed to run directly from a power source at about 5 V. This worked well for us
because the Arduino provides a 5 V supply pin that can power all of these components.
There were initial concerns about whether the Arduino could supply enough current for
all the devices, but in practice, we did not encounter any issues. With this, we could just
do some simple connections to power our system. Below is our circuit diagram:

+5V

AN

Al
Arduine_UNO_R3

vin e
4.
5

15 5o /Rx RESET |-
A8 01,/7x o
47 b2 IOREF [+
18 b3
o L] AREF F2 GND
5 D5 +5v
Ll pe Ao |2
M2 = R AL % o & “”T
Matar_Serva - £ 08 A2 == —
3 I5GND £4 b a3 2 228
FK— 15 £2 D10 soa/au *
il 28 p1q SCL/As Lt _
27 . Infrared Sensor
£ D012
£ D13 na/a4 B
cL/as B2

GND
GNE
GNDu

29
4

GND

Fig 1: Image of the circut that we used to operate the scanner.

Calibrating the Sensor:

After our circuit is assembled, it's time to test our sensor to get some values and figure
out how the analog voltage returned by the circuit can be turned into distances, which can
be used to create our image. To do this, we must calibrate our sensor and create a
calibration curve. Below is an image of how this experiment was completed.

TR sensor
Hand blocle ‘/

a
/

Mensuring- (| —
—r.(,e

A cduwino

Fig 2: Sketch of the full scanning setup.

As we can see, to calibrate our sensor, we took a bunch of distance measurements and
their associated voltage reading from the Arduino, and used that to create a curve and
equation that we used to output distance values. Below is the Arduino code that we used
to output voltage values into a serial monitor:

1 const uint8 t PIN IR = A®;

2 const float VREF = 5.8;

q

4 void setup() {

5 Serial.begin(1152@0);

6 }

.

8 wvoid loop() {

9 uintle t adc = analogRead(PIN_IR);
18 float voltage = adc * (VREF / 1823.0f);
11 Serial.println(voltage, 3);

12 delay(100);

13

[

Fig 3: Calibration code to find the correct voltage.

It is a very simple code where it sets up which pin the analog reading will come out of,
starts up the serial monitor, which is where we will be reading our data, and then reads
the data through analogRead() and converts that into an integer value from 0-1023. From
that value, we have to divide the value by 1023 and multiply by 5 to get volts because our
Arduino takes in 5V, and to get a true proportion, we have to do those two operations.
Now that we have that equation, the output will be in volts and will print out on the
monitor to see. With this complete, it was time to take distances and voltage readings and
turn them into a calibration curve. Note that one of the things we took into account was
the graph in the documentation for the IR sensor, which shows the voltage vs distance for
the sensor. There was a huge peak at 20 cm, and after that, a clear curve formed. Because
of this, we wanted to model our sensor on that curve after 20 cm, which is why all of our
calibration data is after that point.

Here is a table of our calibration data.

Distance (cm) Voltage (Volts)
20 2.65
25 2.23
35 1.61
40 1.59
45 1.37

50 1.24
60 0.97
70 0.89

From these data points, we can create a calibration curve that represents the voltage over
distance of this sensor. We can do this by plotting the different points on MATLAB and

fitting the equation to some constant values that would give us the approximate line of fit
for our points and thus our sensor. Here is the code that we used to generate our equation:

% --- Fit calibration curve ---
x =1 ./ dist _cm;

p = polyfit(x, volt v, 1);

a =p(1); b =p(2);

Fig 4: Fitted variables for the calibration curve.

With this calculation, we can create a plot with our gathered points and line of best fit.
However, before we do this, we should collect a couple of extra test points to see how
accurate our line of best fit is and see if we need to make any changes. Below is the table
of test points we collected:

Distance (cm) Voltage (Volts)
22 2.502
32 1.89
42 1.51
52 1.19
62 .96

Now we can plot everything. Below is the MATLAB plot of all of our information that
we have just gathered.

IR Sensor Calibration Curve

® Data points
r O Test Points
26 Fit

24+

22F

Voltage V (V)

08 I I I I I I I I I |
20 25 30 35 40 45 50 55 60 65 70

Distance d (cm)

Fig 5: Calibration curve for IR sensor.

As we can see, our line of best fit creates a nice calibration curve for us to use with the
test points coming close to or around where they should be. We can compare it to the
graph from the IR sensors documentation, which is shown in Figure 6 (bottom of page),
which is the actual distance graph. From here, we can also double-check our curve by
creating an error table:

test_dist_cm test_wvolt_V d_est error_cm
22 2.582 21.737 -9.2626
32 1.89 29.759 -2.24@85
42 1.51 38.606 -3.3941
52 1.19 51.497 -8.58314
B2 8.96 B7.759 5.759

Fig 6: Test distances and voltages for the calibration curve.

We have a little bit of error, but nothing too big that should cause us any issues when it
comes to scanning. In addition to this, the largest error came from a large distance of 62,
which our module will not have to deal with at all. In the end, we were left with this
calibration equation:

Voltage = 49.3511 * — + 0.2317

However, since we are inputting voltage and wanting distance out, this is the equation we

will be placing into our Arduino code:
49.3511
Voltage — 0.2317

Now, with our equation, we can begin to plan how we are going to scan objects.

Distance =

Servo Apparatus

Fig 7: Image of the 3d printed apparatus which holds, pans, and tilts the IR sensor.

We mounted the two servos together using a combination of 3D-printed parts and bolts.
The guiding principle behind our design was to keep the center of gravity as low as
possible to minimize sway and improve stability during scanning. To achieve this, we
placed one servo in the base to handle panning, while the second servo was mounted on
the underside of the panning plate to provide tilt. Instead of directly mounting the tilt
servo, we used a rack-and-pinion mechanism, where a gear on the servo horn meshed
with teeth on the tilt plate. This allowed for smooth tilting of the sensor while keeping the
system compact and stable.

The model was fabricated using an FDM 3D printer and consists of five parts that fit
together to form the apparatus. The base houses the pan servo, while the top plate secures

one of the towers. Tower 2 holds the tilt servo; this tower is designed to be separable so
the servo can slide in and then be bolted to the top plate. The servo horn attaches to the
circular gear, and finally, the rack is mounted on a semicircle where the IR sensor is
positioned. All parts are fastened together with screws that thread directly into the plastic
components.

Object Selection:
Below is the object we selected to scan. This will come in handy as a reference for this
next section.

Fig 8: Image of the scanned object.

Scanning and modeling:

Now that we have our mechanical portion figured out, we can actually do some scanning
and hopefully replicate an object. When looking at how we wanted to design our code,

we wanted to break it down into a couple of main ideas:

1. We will have the vertical servo go from up to down to scan the vertical image of
the object

2. We will have the IR sensor capture data throughout that vertical image and create a
new line when done

3. Once a vertical scan is complete, we will rotate the base servo slightly to move to
the next horizontal point and repeat the vertical scan.

With these four steps, we should be able to have a 2d image representation with distances
of an object we are trying to scan.

Let's begin with step one. To make a servo move, it is fairly simple. All you have to do on

the Arduino IDE is to include the servo.h library, initialize the servo, and then write

positions. The photo below shows the initialization for both servos for this project.
#include <Servo.h>

Servo Base;
Servo Sensor;

Fig 9: Image of the 3d printed apparatus which holds, pans, and tilts the IR sensor.

From here we can now use the in-built function .attach() to assign a digital pin to the
servo and .write() to assign an angle to the servo. With this, we have the fundamentals to
start programming the servos with a loop and aligning that with the IR sensor.

Let's move on to the IR sensor now. To receive data from the IR sensor, we can use
analogRead() to read the analog values from a certain pin. Since we are using A0 (from
the circuit diagram) we can use analogRead(AO0) to get the voltage values using the same
multiplication and division explained in the calibration (take input and multiply by
5/1023). With this voltage, we can take that reading and plug it into our calibration
equation to get distance. It will look something like this:

int raw = analogRead(sensorPin);
float voltage = raw ® (5.0 / 10623.0);

Fig 10: Reading and calculating IR distance

Now, with all of this combined, we can make our first vertical scan of our object. To limit
this to only one servo, we will only define the sensor servo and create a simple code that
will start the vertical at 0 degrees, let it print distances followed by commas into the serial
monitor until the servo has hit 90 degrees, and then will start printing new values. The
servo would pan downwards one degree every 150 ms to make sure we get a good
collection of values to show a clear result. In addition to this, we wanted to make sure
that our scans and hits really stood out. As a result, we added an extra line of code to help
us filter values that were far and things that were not meant to be scanned. To do this, we
created a threshold value that stated if the IR saw a value that was at least this big (40 cm
in our case), we removed the value and labeled it all as 120 cm to make the colors all line
up with one another. With this included, this is what the code looked like for our one
vertical scan.

if (distance > 40.0) {
distance = 120.0;
}
Serial.print(distance);
Serial.print(',");

if (millis() - move time sensor >= Sensor_interval) {
move time sensor = millis();
angle sensor++;
if (angle sensor > 99) {
angle sensor = @,
Serial.println();

b

Sensor.write(angle sensor);
Fig 11: Image of the servo scanning and data stream

All of this code takes place in the Arduino loop and keeps on going. However, for our
sake, we did not need more than one loop, as when the angle of the sensor gets passed 90
degrees, it begins a new line of data, where we can end it and copy the collected data.
From this one line of data, we can use the MATLAB function imagesc(), which takes a
matrix of values and creates an image out of it. Since we only took one line of data, it
will only be a 1xn matrix; however, we can still put out a result. This was a scan of the
middle of the star that sees both the top, the gap, and the bottom:

One Row Distance Heat Strip 120

05

110

100

10 20 30 40 50 60 70 80 90 100
Points

Fig 12: Image single servo scan.

This is good because we can see that our sensor is hitting the solid parts we want it to
scan and discarding the values we don’t. However, one row of values doesn't do much for
us as it does not represent an object. Now we can work on the full logic to create a full 3d
scanner to scan a full object.

Fig 13: Image of the single servo scan setup.

The only thing we haven't completed is step three, which is to implement the base servo.
To do this, all we have to do is make it so that whenever a down pan is complete, we
move the top servo to its top starting position and then shift the base one degree to go to
the next position. To do this, we create a couple of conditional if logic statements our
way. Below is the code that completes that:

it (angle vertical > MAX VERTICAL ANGLE) {

angle vertical = MIN VERTICAL ANGLE;
Serial.println();
first reading = true;

angle horizontal++;
if (angle horizontal > MAX HORIZONTAL ANGLE) {
angle horizontal = @;

}

Base.write(angle horizontal);

Fig 14: Code for the IR sweep.

As you can see, if the angle of the servo goes past the maximum angle that we want (90
degrees in this case), we then reset the vertical (panning) servo, print a new line, reset our
first reading variable to make sure that our output stays perfectly in CSV format, and then
shift the base servo one degree. There is also the condition that if the base servo hits its
max angle, we reset, but that is not necessary in our case. With all of our code and logic
in place, we can finally capture our scan and plot to see how it did. Below is a photo of
how our scan was set up:

411,' : - : : ’ | 4 i “
ﬂ[£ : \ RN

Fig 15: Apparatus set up for double servo sweep.

After collecting our data, we transferred it to MATLAB using the imagesc() function
once again, and this was our output:

IR Scanner 2D Image

10

20

30

40

50

60

70

Vertical Position (Top to Bottom)

&0

a0

100
5 10 15 20 25 30 35 40 45 50 55
Horizontal Position

Fig 16: Final IR scan of object.
Taking a look at our scan, we think we did a pretty good job. The general shape of the
scan is there, and the gap is clear and star-shaped. The next section will go over our
thoughts and reflections.

Reflection

Mechanical Design

The overall result of our mechanical design was a sturdy and wiggle-free setup that could
reliably sweep the sensor. One possible improvement would be to integrate bearing balls
or similar supports into the plate, which would allow smoother rotation and further
reduce the risk of wobble.

Electrical Design

We wired the IR distance sensor and servos to the Arduino using a breadboard and
jumper wires. While this was quick to set up, it introduced a recurring issue: the wires
often came loose during operation, especially as the gantry moved and tugged on them.
This caused interruptions where either the servos stopped rotating or the sensor stopped
recording mid-scan. We did not use crimp pins or housings, which could have provided

more robust and reliable connections. A future version of this project would benefit from
better cable management and more secure connectors.

Software and Programming

With our Arduino code, we encountered some minor issues with serial communication,
mainly when trying to copy data from the Arduino serial monitor into MATLAB. While
the data streamed correctly during scanning, copying values caused highlighting
problems that interrupted logging. Saving directly to CSV would be a more robust
approach in the future.

Visualization and Results

We used MATLAB for data visualization, as it provided an efficient workflow for
processing the CSV files and generating plots. Our test object was reproduced clearly in
the scan output. The scale of the scan matched the original geometry, with consistent step
sizes in both the horizontal and vertical directions. While there was some slight angular
distortion, it was minimal and did not significantly impact the recognition of the shape.
Next time, if we wanted a possibly even clearer image, we would account for the angular
distortion and possibly take more data points.

Overall Reflection
Overall, the project demonstrated a successful integration of mechanical, electrical, and
software elements. We are particularly proud of two aspects:
- The rack-and-pinion mechanism provided a unique and effective way to achieve
tilting while keeping the system compact.
- The simplicity of the scanning code, which was easy to implement and reliable in
execution.

There are several areas for improvement that we could implement in the future:

- Increasing the resolution of the scan to capture smaller, more detailed objects.

- Improving wiring reliability with secure connectors or custom harnesses.

- Exploring additional mechanical supports (e.g., bearings) for even smoother and
more precise motion.

Appendix:

Vertical Scan Arduino Code:

#include <Servo.h>
Servo Sensor;

const int sensorPin = A@; // analog input for your IR sensor
const uintl6_t Sensor_interval = 150; // ms between servo updates

uint32_t move_time_sensor;
int angle_sensor = 0;

void setup() {
Serial.begin(9600);
Sensor.attach(3);

// Move servos to their starting angles
Sensor.write(angle_sensor);
move_time_sensor = millis();

}
void loop() {
// --- Read analog voltage from sensor ---
int raw = analogRead(sensorPin); // ©-1023 on a 5 V Arduino
float voltage = raw * (5.0 / 1023.0); // convert to volts
// --- Convert voltage to distance using your calibration ---

// d = 49.3511 / (V - 0.2317)
float distance = 49.3511 / (voltage - 9.2317);

// --- Stream data ---
if (distance > 40.0) {
distance = 120.0; // Thresholded "no object"
}
Serial.print(distance); // distance in your calibrated units
Serial.print(',");
// --- Servo scanning logic ---
if (millis() - move_time_sensor >= Sensor_interval) {
move_time_sensor = millis();
angle_sensor++;
if (angle_sensor > 90) {
angle_sensor = 0;
Serial.println();
}

Sensor.write(angle_sensor);

Full Scan Arduino Code:

#include <Servo.h>

Servo Base; // Horizontal servo (X-axis)
Servo Sensor; // Vertical servo (Y-axis)

const int sensorPin = A1l; // IR sensor analog input
const uintl6_t Sensor_interval = 150; // Time between movements (ms)

uint32_t move_time_sensor;

int angle_horizontal = 9; // Left to right (Base)
int angle vertical = 0; // Up to down (Sensor)
bool first_reading = true; // Track first reading in a line

const int MAX_VERTICAL_ANGLE = 100;
const int MIN_VERTICAL_ANGLE = 0;
const int MAX_HORIZONTAL_ANGLE = 120;

void setup() {
Serial.begin(115200);
Sensor.attach(3); // Vertical axis (up/down)
Base.attach(11); // Horizontal axis (left/right)

// Initialize positions

Base.write(angle_horizontal);
Sensor.write(angle_vertical);

delay(750); // Give servos time to reach top position

move _time sensor = millis();
first_reading = true;

void loop() {
if (millis() - move_time_sensor >= Sensor_interval) {
move_time_sensor = millis();

// Read IR sensor and calculate distance
int raw = analogRead(sensorPin);
float voltage = raw * (5.0 / 1023.0);

float distance;
if (voltage <= 0.2317) {
distance = 120.0; // Out of range
} else {
distance = 49.3511 / (voltage - ©.2317); // Your calibration
}
if (distance > 30.0) {
distance = 120.0; // Thresholded "no object"

// Output distance data in CSV format
if (!first_reading) {

Serial.print(",");
}
Serial.print(distance, 1); // 1 decimal place
first_reading = false;

// --- Vertical Scanning (Top to Bottom Only) ---
angle_vertical++;

if (angle_vertical > MAX_VERTICAL_ANGLE) {
// End of vertical sweep - reset to top and move horizontal
angle vertical = MIN_VERTICAL_ANGLE;
Serial.println(); // End of this column
first_reading = true;

// Move to next horizontal position

angle_horizontal++;

if (angle_horizontal > MAX_HORIZONTAL_ANGLE) {
angle_horizontal = ©@; // Reset horizontal position

}

Base.write(angle_horizontal);

// Update vertical servo position
Sensor.write(angle_vertical);

}
}

MATLAB Calibration Code

%Calibration Curve

dist_cm
volt_V

[20 25 35 40 45 50 60 70]'; % known distances
[2.65 2.23 1.61 1.59 1.37 1.24 0.97 0.89]'; 7% measured voltages

%Test Values

test_dist_cm = [22 32 42 52 62]'; % known distances
test_volt V = [2.502 1.89 1.51 1.19 .96]"'; % measured voltages
% --- Fit calibration curve ---

x =1 ./ dist_cm;

p = polyfit(x, volt_V, 1);

a =p(1); b =p(2);

fprintf('Calibration model: V = %.4f*(1/d) + %.4f\n', a, b);

% --- Plot calibration curve ---

figure;

scatter(dist_cm, volt_V, 'filled'); hold on;

scatter(test_dist_cm, test_volt_V);

d_plot = linspace(min(dist_cm), max(dist_cm), 300);

plot(d_plot, polyval(p, 1./d_plot), 'r', 'LineWidth', 1.5);
xlabel('Distance d (cm)'); ylabel('Voltage V (V)');

title('IR Sensor Calibration Curve');

legend('Data points','Test Points', 'Fit', 'Location’, 'best'); grid on;

MATLAB Image Generation

data = readmatrix('scanner - scan_data.csv')'; %Loads Data Set
figure; %Creates new figure

imagesc(data); %Generates Image

colorbar; %creates side bar

%Formatting

title('IR Scanner 2D Image');

ylabel('Vertical Position (Top to Bottom)');
xlabel('Horizontal Position');
colormap(jet);

	Mini Project 2: 3D Scanner
	Introduction:
	Circuit development:

